离线下载
PDF版 ePub版

老齐 · 更新于 2018-11-28 11:00:43

将数据存入文件

《文件(1)》《文件(2)》中,已经学习了如何读写文件。

如果在程序中,有数据要保存到磁盘中,放到某个文件中是一种不错的方法。但是,如果像以前那样存,未免有点凌乱,并且没有什么良好的存储格式,导致数据以后被读出来的时候遇到麻烦,特别是不能让另外的使用者很好地理解。不要忘记了,编程是一个合作的活。还有,存储的数据不一定都是类似字符串、整数那种基础类型的。

总而言之,需要将要存储的对象格式化(或者叫做序列化),才好存好取。这就有点类似集装箱的作用。

所以,要用到本讲中提供的方式。

pickle

pickle 是标准库中的一个模块,还有跟它完全一样的叫做 cpickle,两者的区别就是后者更快。所以,下面操作中,不管是用 import pickle,还是用 import cpickle as pickle,在功能上都是一样的。

>>> import pickle
>>> integers = [1, 2, 3, 4, 5]
>>> f = open("22901.dat", "wb")
>>> pickle.dump(integers, f)
>>> f.close()

pickle.dump(integers, f) 将数据 integers 保存到了文件 22901.dat 中。如果你要打开这个文件,看里面的内容,可能有点失望,但是,它对计算机是友好的。这个步骤,可以称之为将对象序列化。用到的方法是:

pickle.dump(obj,file[,protocol])

  • obj:序列化对象,上面的例子中是一个列表,它是基本类型,也可以序列化自己定义的类型。
  • file:一般情况下是要写入的文件。更广泛地可以理解为为拥有 write() 方法的对象,并且能接受字符串为为参数,所以,它还可以是一个 StringIO 对象,或者其它自定义满足条件的对象。
  • protocol:可选项。默认为 False(或者说 0),是以 ASCII 格式保存对象;如果设置为 1 或者 True,则以压缩的二进制格式保存对象。

下面换一种数据格式,并且做对比:

>>> import pickle
>>> d = {}
>>> integers = range(9999)
>>> d["i"] = integers        #下面将这个 dict 格式的对象存入文件

>>> f = open("22902.dat", "wb")
>>> pickle.dump(d, f)           #文件中以 ascii 格式保存数据
>>> f.close()

>>> f = open("22903.dat", "wb")
>>> pickle.dump(d, f, True)     #文件中以二进制格式保存数据
>>> f.close()

>>> import os
>>> s1 = os.stat("22902.dat").st_size    #得到两个文件的大小
>>> s2 = os.stat("22903.dat").st_size

>>> print "%d, %d, %.2f%%" % (s1, s2, (s2+0.0)/s1*100)
68903, 29774, 43.21%

比较结果发现,以二进制方式保存的文件比以 ascii 格式保存的文件小很多,前者约是后者的 43%。

所以,在序列化的时候,特别是面对较大对象时,建议将 dump() 的参数 True 设置上,虽然现在存储设备的价格便宜,但是能省还是省点比较好。

存入文件,仅是一个目标,还有另外一个目标,就是要读出来,也称之为反序列化。

>>> integers = pickle.load(open("22901.dat", "rb"))
>>> print integers
[1, 2, 3, 4, 5]

就是前面存入的那个列表。再看看被以二进制存入的那个文件:

>>> f = open("22903.dat", "rb")
>>> d = pickle.load(f)
>>> print d
{'i': [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, ....   #省略后面的数字}
>>> f.close()

还是有自己定义数据类型的需要,这种类型是否可以用上述方式存入文件并读出来呢?看下面的例子:

>>> import cPickle as pickle        #cPickle 更快
>>> import StringIO                 #标准库中的一个模块,跟 file 功能类似,只不过是在内存中操作“文件”

>>> class Book(object):             #自定义一种类型
...     def __init__(self,name):
...         self.name = name
...     def my_book(self):
...         print "my book is: ", self.name
... 

>>> pybook = Book("<from beginner to master>")
>>> pybook.my_book()
my book is:  <from beginner to master>

>>> file = StringIO.StringIO()
>>> pickle.dump(pybook, file, 1)
>>> print file.getvalue()           #查看“文件”内容,注意下面不是乱码
ccopy_reg
_reconstructor
q(c__main__
Book
qc__builtin__
object
qNtRq}qUnameqU<from beginner to master>sb.

>>> pickle.dump(pybook, file)       #换一种方式,再看内容,可以比较一下
>>> print file.getvalue()           #视觉上,两者就有很大差异
ccopy_reg
_reconstructor
q(c__main__
Book
qc__builtin__
object
qNtRq}qUnameqU<from beginner to master>sb.ccopy_reg
_reconstructor
p1
(c__main__
Book
p2
c__builtin__
object
p3
NtRp4
(dp5
S'name'
p6
S'<from beginner to master>'
p7
sb.

如果要从文件中读出来:

>>> file.seek(0)       #找到对应类型  
>>> pybook2 = pickle.load(file)
>>> pybook2.my_book()
my book is:  <from beginner to master>
>>> file.close()

shelve

pickle 模块已经表现出它足够好的一面了。不过,由于数据的复杂性,pickle 只能完成一部分工作,在另外更复杂的情况下,它就稍显麻烦了。于是,又有了 shelve。

shelve 模块也是标准库中的。先看一下基本操作:写入和读取

>>> import shelve
>>> s = shelve.open("22901.db")
>>> s["name"] = "www.itdiffer.com"
>>> s["lang"] = "python"
>>> s["pages"] = 1000
>>> s["contents"] = {"first":"base knowledge","second":"day day up"}
>>> s.close()

以上完成了数据写入的过程。其实,这更接近数据库的样式了。下面是读取。

>>> s = shelve.open("22901.db")
>>> name = s["name"]
>>> print name
www.itdiffer.com
>>> contents = s["contents"]
>>> print contents
{'second': 'day day up', 'first': 'base knowledge'}

当然,也可以用 for 语句来读:

>>> for k in s:
...     print k, s[k]
... 
contents {'second': 'day day up', 'first': 'base knowledge'}
lang python
pages 1000
name www.itdiffer.com

不管是写,还是读,都似乎要简化了。所建立的对象s,就如同字典一样,可称之为类字典对象。所以,可以如同操作字典那样来操作它。

但是,要小心坑:

>>> f = shelve.open("22901.db")
>>> f["author"]
['qiwsir']
>>> f["author"].append("Hetz")    #试图增加一个
>>> f["author"]                   #坑就在这里
['qiwsir']
>>> f.close()

当试图修改一个已有键的值时,没有报错,但是并没有修改成功。要填平这个坑,需要这样做:

>>> f = shelve.open("22901.db", writeback=True)    #多一个参数 True
>>> f["author"].append("Hetz")
>>> f["author"]                   #没有坑了
['qiwsir', 'Hetz']
>>> f.close()

还用 for 循环一下:

>>> f = shelve.open("22901.db")
>>> for k,v in f.items():
...     print k,": ",v
... 
contents :  {'second': 'day day up', 'first': 'base knowledge'}
lang :  python
pages :  1000
author :  ['qiwsir', 'Hetz']
name :  www.itdiffer.com

shelve 更像数据库了。

不过,它还不是真正的数据库。真正的数据库在后面。


总目录   |   上节:第三方库   |   下节:mysql数据库(1)

如果你认为有必要打赏我,请通过支付宝:qiwsir@126.com,不胜感激。

上一篇: 第三方库 下一篇: MySQL 数据库(1)